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Coding Theory

J.H. van Lint

1. INTRODUCTION

Coding theory, or more specifically, the theory of error-correcting codes is
younger than the Foundation Mathematical Centre. We go back to the late
1940°s. In those days computers were able to recognize bit errors (due to
some technical failure) and if this happened, the process would be termi-
nated. The 1dea is simple. Sequences of binary symbols (0 and 1) of a
fixed length n are processed. Such sequences will be referred to as words.
The only words that were allowed to be used were those with an even num-
ber of 1’s. Clearly an error (which was luckily improbable) in a single bit
would cause a violation of the parity rule and the computer stopped. In
sufficiently long programs this would eventually happen. As a consequence
R.W. Hamming of Bell Laboratories (USA) quite often found his computer
not at work when he returned to the laboratories in the morning: an er-
ror had been detected. His irritation over the fact that an error could be
detected but not corrected, led to his construction of the Hamming code,
a so-called single-error-correcting code. The idea of the code can be easily
understood from the following simple and elegant description, due to R.J.
Mc Eliece. We assume that information is presented as a long string of 0’s
and 1’s. These are to be communicated from a ‘sender’ to a ‘receiver’ over
a medium that we shall call ‘the channel’. This channel has the unpleasant
property that, with a (luckily small) probability p, sometimes a 0 is changed
imto a 1 or a 1 into a 0 on the way to the receiver. We wish to significantly
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Figure 1. The Hamming code.
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of 0’s en 1's. For this we are willing to pay a toll (loss of time or energy
or space, all depending on the practical application of this model). Here is
what Hamming did. The sequence of 0’s and 1's is divided into fourtuples.
eacli of which is mapped iuto a seventuple. The seventuples are transmitted.
The mapping is described in figure 1.

1.1. An example

Let (ai,as,as3,ay) be a fourtuple. These bits are put mto the positions
1,2,3,4, in the figure. From the positions 5.6,7 we find three so-called re-
dundant bits by the following parity rule: each of the circles LILIII should
contain an even number of 1's. The reader will easily see that if one bit is
received Incorrectly, the receiver can see from figure 1 which circles violate
the parity rule. This clearly identifies the position of the erroneous bit and
correction can take place! To understand why this became an extremely
exciting area in mathematics, we must analyse the ‘code’ described above.
T'his will allow us to quote the theorem that started coding theory. It is
known as Shannon’s Theorem, put forward in his monumental paper in 1948
(see [1]).

In the example above, each received sequence comnsists of four bits of

information and three redundant bits. We say that the information rate
R equals 4/7. As an exercise, the reader can check that if the probability
p that a bit i1s transmitted erroneously by the channel is say 0.001, then
the probability that a fourtuple is misinterpreted by the receiver is roughly
2.107°. Clearly not using coding would imply an error probability of 4.107°.
T'his 1s an impressive improvement in error probability and the toll is a
decrease of an information rate from 1 to 4/7. It may be of interest to the
reader to know that, on the most impressive application of coding theory,

to wit the compact disc, the information rate is 3/4, i.e., one fourth of

the disc does not contain music but redundancy added by coding theorists,
responsible for the superb quality of the music!

T'he channel that we described above is known as the binary symmetric
channel. The model assumes that a bit-error is a random event with a
given probability p. For such a channel, we define the capacity C' as C =
1 +plogp+ (1 —p)log(l —p). (Logarithms to base 2.) In our example, we
have ' =~ 0.99.

Shannon’s theorem states that for a binary symmetric channel with ca-
pacity ' and for any ¢ > 0 and any R < C, there exists a code with rate
at least R and error probability (after decoding) less than . This sounds
unbelievable. What one should realize is that the codes of this theorem are
extremely long.
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1.2. Applications

Where has coding theory gone? We mention some of the important areas of
application (see also figure 2). As mentioned in the introduction, computing
1s an lmportant area of application. Since most modern communication is
digital, error-correction plays a role there. Spectacular applications were
the photographs taken by several satellite missions (Mars, Saturn, Jupiter).
Without coding theory there would not have been pictures at all. In re-
cent times the CD is the most notable application. In these examples, the
channels are quite different. For telephone, it is light in optical fibre, for
satellites radio communication (where the source of errors is thermal noise
in the amplifier at the receiver), for CD the errors are caused by dust, air
bubbles in the disc, scratches, finger prints, etc. Practical requirements
can differ considerably: processing the signals from Mariner Mars took one
day; the CD-player has a delay (for decoding) of a fraction af a second.
Obviously, a lot of energy has gone into finding good (i.e., fast) decoding
algorithms.

1.3. Parameters

To understand some of the mathematical developments, we need some pa-
rameters. We use n for the length of the code. The alphabet is not nec-
essarily {0,1}. We use ¢ for the size of the alphabet. In algebraic coding
theory, g 1s a prime power and the alphabet is a finite field. (For CD we have
g = 2%.) Up to now, we have not mentioned the most important parameter
of a code, to wit its distance. The distance of two words 1s the number of
places where they differ (e.g., 101011 and 100010 have distance 2, since they
differ in positions three and six). The minimum distance d of a code C' is the
minimum value of the distance between two distinct codewords. Obviously
for a code with minimum distance d = 2e + 1, it is theoretically possible
to correct up to e errors. The most important problem in combinatorial
Coding Theory is to establish bounds for the number A,(n,d), the mazimal
number of codewords in a code C' of length n over an alphabet of size ¢, and
with minimum distance d. For example A5(7,3) = 16 and the Hamming
code described above realizes this bound. Clearly, for practical applications
one has tried to find relatively good codes of moderate length, i.e., codes
with given n, g, and d, for which |C] is close to A,(n,d). Quite often, math-
ematical results are not appealing to engineers because the construction of
the code gives no hint as to how the receiver can decode (quickly).

1.4. Covering codes

We now turn to so-called covering codes. This area of research 1s very im-
portant for error-correcting codes themselves but i1s also, in some sense,
complementary. Some of the applications concern data-compression (im-
portant for high definition television). Here the problem is that we have
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Figure 2. Coding theory is applied in several areas. Spectacular examples include:
Voyager pictures of Saturn (above) and CD-players (below, high density pit structure
shown on the right; courtesy Philips NV Eindhoven).
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too much information to transmit and that we are willing to accept small
deviations i order to save time or space. We illustrate this using our earlier
example of the Hamming code. We first introduce some geometric termi-
nology. It ¢ 1s a codeword in a code (', then the ball of radius r around c
consists of all words x. such that d(x.c) < r. Note that if (" has minimumn
distance d = 2¢ + 1. then the balls of radius ¢ around the codewords are
disjoint. There can be many words x that are not in any of these balls. In
practice of error-correction this is important. A received word that is within
a ball of radius e around a codeword ¢ is decoded as ¢. If x is received and
x 1s not in any of these balls, the receiver knows that too many errors have
occurred for him to handle the situation.

Back to data compression. We have to send mformation consisting of
seven bits. If the receiver makes one error, this is close enough for him to
imterpret our meaning. (In TV this is achieved by the redundancy of the
overall picture.) For each seventuple we consider the ball in the Hamming
code to which 1t belongs. determine the centre and transmit only the bits
(a1, s, a3, ay corresponding to that centre. The receiver 1s never more than
one bit off (for the seventuple) and we have only 4/7 of the amount of infor-
mation to be transmitted, a considerable gain. This leads to the dehnition
of the covering radius of a code (' (a subset of all words of length n over
an alphabet of size ¢). The covering radius is the smallest number O such
that the balls of radius @ around the codewords of (' cover all words of

because the balls of radius 1 around codewords are not only disjoint but
they also cover the space. In practice, perfect codes are far from perfect;
the occurrence of too many errors should in general not escape the receiver.
There has been far less research on covering codes than on error-correcting
codes.

1.5. Coding theory and algebraic geometry

For a long time, coding theory was an area for electrical engineers. Many
of their interesting achievements later turned out to be equivalent to math-
ematical methods and results that had been known for a long time. It
was not until the 1970’s that mathematicians became interested in coding
theory (influenced partly by activities in The Netherlands). Especially the
relations between coding theory and design theory (an area with its origin
in statistics and quality control) led to a surge of interest. We will go into
this below. Algebraic methods became increasingly important (especially
through the work ot Ph. Delsarte). A peculiar connection to simple groups
pulled in another area, so that by the 1980°s coding theory was respectable
for group theorists, algebraists and of course combinatorialists. And then
algebraic geometry appeared on the scene of coding theory, ‘bien étonné de
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se trouver ensemble’! 1t is extremely difficult to explain the connection but
let’s try.

Fveryone 1s tamiliar with the fact that the rational numbers are a sub-
field of the reals. Evervone is familiar with the curve .S known as the unit
circle: {S = (r.y) : 0=+ y= = 1}. The point (3/5. 4/5) on S has rational
coordinates but in general the coordinates on S will be nrrational. We are
mterested i codes over an alphabet £, (the finite feld with ¢ elements).
T'his field is a subficld of its algebraic closure /' (which 1 an infinite field).
In algebraic geometry one studies curves (defined using coordinates in F),
egivenn by an algebraic equation (like the circle S above). One of the nn-
portant problems 1s to determine the ‘rational” points on 5. Here, rational
means that the coordinates are in the subfield £,

We now describe the link to coding theory. Let .S be an algebraic curve
over F with n rational points 2, %, ..., F,. Consider a suitably chosen
set F of rational functions defined on S. The code (7 is defined as the col-
lection of words (f(P), f(I%)..... f(F,)) of length n obtained by letting
f run through F. If we know enough about the curve 5. it is possible to
make (interesting) assertions about the code (7, i.e., about its minimum dis-
tance. Using some deep results from algebraic geometry, M.A. Tsfasman,
S.G. Viadut, and Th. Zink 1 1982 proved the existence of codes that are tar
better than anything that was believed possible until then. Clearly a sen-
sational development. This result has led to quite a lot of research 1 which
The Netherlands has made significant contributions. Three directions can
be mentioned. First, studying special classes of curves to see if reasonably
cood codes can be found. Second, finding decoding algorithms, preferably
cood enough to get engineers interested. (Notice that the problemn has re-
versed.) Recently, there has been progress in translating the results from
algebraic geometry into terminology that avoids the deep mathematics but
produces nearly the same results [2]. This is an exciting area that has just
been opened.

2. CODING THEORY AT CWI

Research on coding theory at CWI started in 1972. This marked the begin-
ning of the strong collaboration with the Discrete Mathematics group at the
Eindhoven University of Technology (TUE, which has lasted). Lhuaportant
contributions from the early yvears are several results on bounds on codes
due to M.R. Best and A.E. Brouwer. In 1974 CWI organized the Advanced
Study Institute on Combinatorics at Nijenrode Castle. 1t 1s still considered
one of the major events in this area of the past 25 vears! At the mmeeting I’h.
Delsarte (invited speaker) presented his theory of the association schemes
of coding theory. It has had a very strong influence on the research at
both CWI and TUE. One of the open problems mentioned in the lecture ot
J.H. van Lint on perfect codes was solved by M.R. Best in his Ph.D. thesis
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(1982). In 1975 a course on coding theory was-held at the Mathematical
Centre (CWD's name before 1983). This led to MC' Syllabus 31 which was
the basis for a book on Coding Theory [3].

3. PH.D. PROJECTS (NWO/SMC) PERFORMED AT TUE
One part of the Ph.D. thesis of H.J. Tiersma (1989) was concerned with
codes from algebraic geometry, namely those based on Hermitean curves.

for channels that differ from the binary symmetric channel described above.
We do not go into details but the idea is that more than one user uses the
channel and information goes both ways, or it is added, etc.

G.J.M. van Wee (Ph.D. thesis 1991) also dedicated some of his time to
algebraic geometry codes. The question that is answered is ‘Which linear
codes are algebraic-geometric?’ (joint work with R. Pellikaan and B.Z.
Shen). It turns out that in the class of codes known as Hamming codes
only those with at most two redundant symbols can be constructed with an
algebraic curve, with the exception of our example of figure 1.

T'he main part of the thesis concerns covering codes. One result deserves
special mention. It is an elementary but ingenious counting argument that
produces a lower bound on the number of words in a code of given length
and covering radius. It is now known as the Van Wee bound. For this Ph.D.
thesis Dr. van Wee was awarded the prestigious ‘Dissertationspreis’ of the
Gesellschaft fiir Mathematik, Okonomie und Operations Research in 1992.

In the meantime the algebraic-geometry code research group at the T UE,
supervised by R. Pellikaan, had obtained international recognition. This led
to several visits from researchers from abroad. An important further step
in this process was the Ph.D. thesis by I.M. Duursma (1993) on Decoding
Codes from Algebraic Curves. Mathematically speaking, the problem is
solved but for practical use it is essential that far more efficient methods are
found. This research (often jointly done with visitors) has led to sufficient
insight in these codes to be able to describe them in a more elementary
way, thus opening the door to practical use. The decoding methods also
led to new decoding techniques for cyclic codes. This extremely successful
SMC-project led to 12 publications and 25 lectures abroad by Dr. Duursmal

In 1994 two SMC-projects resulted in a Ph.D. thesis. Feng-Wen Sun
constructed decoding techniques and a modulation scheme for band-limited
communications. The channels concerned differ considerably from those
above. Either the signal is continuous and noise is Gaussian noise and not
discrete, or the errors are not discrete but weighted in some way. Despite
this different approach to signalling there is strong interplay with traditional
coding theory in the thesis.

R. Struik extended the work of Van Wee on covering codes, In tact,
he gave an improvement of the Van Wee bound. This led to several new



CODING THEORY

records. Furthermore the thesis analyses the codes with covering radius 2
or 3 and presents several new constructions for covering codes.

Both for the area of covering codes and for codes from algebraic geo-
metry 1t 1s clear that the results mentioned above have made it possible to
formulate many new interesting projects. It is therefore quite desirable that
this sequence of SMC-projects is continued in the future.
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